ОСНОВНЫЕ ПАРАМЕТРЫ
Нашей промышленностью выпускается достаточно большое количество разнообразных по своему применению и принципам построения приборов с цифровым отсчетом. Немало ЦИП, различных по сложности и назначению разработано и радиолюбителями. К наиболее важным техническим характеристикам ЦИП относятся: цена деления, входное сопротивление, быстродействие» точность, помехоустойчивость, надежность. В некоторых случаях придается значение мощности потребления ЦИП.
Цена деления. Ценой деления называют разность значений величин, соответствующих двум соседним отметкам шкалы. Для каждого предела измерения цена деления постоянна и определяет минимально возможную для данного ЦИП разрешающую способность. Это наименьшее различимое измерительным прибором изменение измеряемой величины. Для ЦИП — это обычно изменение цифрового отсчета на единицу младшего разряда. Иногда под разрешающей способностью понимают значение цены деления младшего предела ЦИП. Но, строго говоря, разрешающая способность в отличие от цены деления не является обязательно постоянной даже на одном пределе измерения.
Разрешающая способность определяется в основном схемными особенностями ЦИП. В свою очередь, разрешающая способность совместно со значением первого предела (или основного) определяет число декад или двоичных разрядов проектируемого прибора. Число декад или двоичных разрядов эквивалентно динамическому диапазону входных сигналов, например 60 дБ для трехдекадных приборов.
Пределы измерения расширяются с помощью декадных делителей напряжения (в сторону увеличения измеряемой величины) или с помощью масштабных усилителей постоянного тока (в сторону уменьшения). В масштабных усилителях целесообразно использовать интегральные операционные усилители (ОУ).
Входное сопротивление. Входное сопротивление ЦИП характеризует мощность, отбираемую при измерении у. источника измеряемого сигнала. Наиболее важную роль входное сопротивление играет при измерении электрических напряжений.
Быстродействие. В цифровых приборах с циклическим управлени ем цикл измерения обычно включает в себя: установку исходного состояния, собственно измерительный интервал, формирование сигнала об окончании измерения. Часто быстродействие измерительного прибора с циклическим управлением оценивается максимально возможным числом измерений в секунду. При визуальном отсчете показаний в длительность цикла требуется включать время, необходимое для переписи информации в буферную память, а также время индикации, необходимое для восприятия информации оператором.
Применение отсчетных устройств с буферной памятью позволяет разместить временной интервал собственно измерения внутри временного интервала индикации, т. е. проводить текущее измерение в течение цикла индикации предыдущего измерения. Такое построение отсчетного устройства позволяет в зависимости от времени индикации увеличить число измерений в секунду примерно аа 10 — 30%.
Для повышения защищенности вольтметров постоянного тока от высокочастотных и импульсных помех во входные цепи приборов включают сглаживающие звенья. Время переходных процессов в сглаживающем фильтре входит в длительность цикла измерения и должно учитываться.
В приборах со следящим способом работы преобразователя быстродействие оценивается длительностью обработки единицы дискретности. На переменном токе быстродействие ЦИП снижается и определяется главным образом временем преобразования переменного напряжения в постоянное (без учета време-яи индикации). Так, при использовании преобразователя среднего значения можно добиться минимального времени преобразования выбором оптимальных схем собственно преобразователя и фильтра, обеспечивающих наименьшую длительность переходных процессов в этих узлах, а также применяя в фильтре конденсаторы с малой остаточной поляризацией, например фторопластовые ФТ-2.
Точность. Под ней в общем случае понимают ту область, в пределах жоторой находится погрешность измерения данным прибором при определенных условиях его применения.
При нормальных условиях применения учитывается основная погрешность, а при отклонении от них — сумма основной и дополнительных погрешностей. Дополнительные погрешности образуются в результате изменения температуры, частоты и т. п. Наиболее привычный и по-нятиый способ сравнительной оценки точности измерительных приборов, сущность которого заключается в указании класса точности в виде количества процентов от конечного значения рабочего диапазона измерения, для ЦИП не является удачным.
Для измерительных АЦП ГОСТ устанавливает, что их основная относительная (т. е. пропорциональная измеряемому значению) погрешность должна выражаться в процентах значения измеряемой величины, а не хонечного значения рабочего диапазона. При равенстве измеряемой величины конечному значению рабочего диапазона основная относительная погрешность численно равна приведенной погрешности при обычном нормировании.
Для реальных ЦИП общая погрешность измерения включает в себя относительную и инструментальную (абсолютную) погрешности. Инструментальная погрешность не зависит от значения измеряемого сигнала и определяется суммарным влиянием погрешностей и нестабильностью параметров отдельных узлов и элементов ЦИП, входящих в их измерительные преобразователи. Сюда можно отнести погрешности и нестабильность уровней квантования, резисторов, конденсаторов и активных элементов. Аналитические формы выражения погрешности ЦИП приведены в [16, 18]. В этих же работах приведены применительно к отдельным устройствам основные факторы, определяющие погрешность ЦИП. У некоторых приборов в состав абсолютной погрешности входит также погрешность вследствие накопившегося в промежутке между двумя регулировками прибора дрейфа нуля усилителя, устройств сравнения и формирующих устройств. Предельное значение абсолютной погрешности определяется принципом построения прибора, примененной элементной базой и не зависит от времени его эксплуатации.
Все изложенное относится к погрешностям, называемым статическими, т.
е. к погрешностям измерения усредненного значения, которые возникают из-за неточности измерительного прибора при условии постоянства измеряемого сигнала. Статическая погрешность ЦИП является составной частью динамической погрешности, ее частным случаем. Динамическая погрешность ЦИП определяется как разность между зафиксированным ЦИП значением измеряемой величины и ее истинным значением в момент отсчета. Эта погрешность, с одной стороны, определяется изменением измеряемой величины в процессе измерения, а с другой — инерционностью отдельных элементов ЦИП, т. е. его быстродействием, конечной длительностью измерительного цикла, в течение которого измеряемый сигнал претерпевает изменение.
При анализе источников погрешности целесообразно группировать абсолютную и относительную составляющие так, чтобы можно было выделить погрешности, устраняемые в процессе установки нуля и калибровки ЦИП. Это позволит установить минимальными погрешность прибора после проведения указанных регулировок и погрешность, которая может накопиться в приборе главным образом вследствие изменения температуры окружающей среды за определенное время. Необходимо также учитывать влияние колебаний сетевого напряжения или разрядку автономных источников питания. Напряжение питания всех узлов, определяющих погрешность ЦИП, необходимо жестко стабилизировать и фильтровать. Коэффициент стабилизации в зависимости от точности прибора должен быть не ниже 200 — 300 (например, компенсационные стабилизаторы с применением ОУ).
Помехоустойчивость. Под помехоустойчивостью ЦИП понимают способность ЦИП правильно воспроизводить значение измеряемого сигнала, несмотря на наличие различных воздействий, искажающих измеряемый сигнал. Эти воздействия, называют помехами. Полностью устанить влияние помех, появляющихся на входных зажимах вместе с сигналом, нельзя. Оценку помехоустойчивости ЦИП обычно проводят по отношению к аддитивным, т. е.
суммирующимся с полезным сигналом, помехам. Помехоустойчивость численно характеризуется степенью подавления помех на входе ЦИП.
Различают помехи импульсные и флуктуационные. Импульсные помехи представляют собой последовательность импульсов произвольной формы, длительности и амплитуды. Длительность импульсов обычно короче интервала между ними. Флуктуационные помехи представляют собой непрерывный во времени случайный процесс. Частным случаем такой помехи является гармоническая (например, сетевая) помеха. Данный вид помех подразделяют обычно на помехи нормального вида и помехи общего вида. Первые возникают на входных зажимах ЦИП в основном за счет электромагнитных наводок на сопротивлении линий связи между источником сигнала и ЦИП, вторые — в основном из-за различия потенциалов точек заземления у источника измеряемого сигнала и у ЦИП.
Для снижения уровня помех общего вида необходимы рациональное построение и монтаж входных цепей ЦИП, т. е. правильный выбор точек заземления, экранировка, гальваническая развязка и т. п. Основными методами борьбы с помехами нормального вида являются фильтрация, статистическая обра-бодка, компенсация и усреднение. Метод фильтрации наиболее простой, но он резко снижает быстродействие ЦИП. Метод статистической обработки из-за своей сложности широкого распространения пока не получил. Метод компенсации требует для своей реализации определенных аппаратурных затрат (формирование дополнительного канала для выделения помехи и введение ее в основной канал с обратным знаком), поэтому он также не нашел широкого применения. Наиболее перспективным для ЦИП является метод усреднения помехи нормального вида за определенный интервал времени преобразования. Если обозначить t — время усреднения, а Г — период помехи, то можно показать, что степень подавления тем больше, чем больше отношение t/T. Если же это отношение равно точно целому числу (кратность), то степень подавления помехи обращается в бесконечность.
В реальных ЦИП при отсутствии мер по точной синхронизации t и Т степень подавления сетевой помехи ограничена примерно 40 дБ, что в основном определяется нестабильностью частоты сети, равной ±1%.
Надежность. Под надежностью понимают свойство устройства выполнять необходимые функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени. Вопросы оценки и расчета надежности подробно приводятся в специальной технической литературе и здесь не рассматриваются.
Потребляемая мощность. Одной из наиболее действенных мер по снижению потребляемой мощности ЦИП является замена каскадов, собранных на дискретных элементах, интегральными микросхемами (ИС), а также замена цифровых ИС малой степени интеграции ИС средней и большой степени интеграции. В настоящее время разработаны и все шире применяются ИС, представляющие собой вполне законченные функциональные устройства. Например, на ИС К572ПА1 в зависимости от способа включения и дополнительных элементов можно организовать или АЦП, или ЦАП.
В ИС средней и большой степеней интеграции резкое снижение размеров отдельных элементов приводит к соответствующему снижению паразитных емкостей и, как следствие, к снижению потребляемой мощности. Кроме того, более тонкая структура полупроводниковых приборов в СИС и БИС позволяет выполнять переключения с меньшими точками. Следствием всего этого являются снижение мощности, потребляемой ЦИП от источника питания, и увеличение надежности всего прибора.
При схемной проработке цифрового прибора необходимо тщательно сопоставлять применяемую элементную базу с желаемыми характеристиками разрабатываемого прибора (в частности, с быстродействием), так как с ростом быстродействия применяемых ИС, естественно, растет и потребляемая ими мощность. Целесообразно применять в цифровых устройствах ИС различных серий, например в первой декаде счетчика — серии К155, К133, а в последующих — серию К134; в буферной памяти вместо К155ИР1 можно использовать К134ИР1.При таком построении можно снизить ток, потребляемый цифровыми устройствами, примерно на 0,5 А. (При использовании во всех цифровых узлах только одной серии К155 (К133) ток потребления составит около 0,7 — 1,0 А.) Еще больше снизить потребляемую мощность можно, применяя серии на КМОП-структурах (К176, К564). В этом случае ток, потребляемый цифровой частью (без устройства индикации), составляет всего несколько десятков миллиампер.