Принципиальная схема отсчетного устройства
Отсчетное устройство (рис. 54). В отсчетном устройстве комплекса использован принцип динамической индикации с поразрядным опросом (см. ранее), что позволило (при числе разрядов 8) не только упростить схему, сократив число корпусов микросхем, но и резко уменьшить число соединительных проводников « индикатору. Например, если в девятиразрядном индикаторе делать выводы от каждого электрода, то их число равнялось бы 99. В качестве цифровых индикаторов в отсчетном устройстве применен цифровой дисплей от микрокалькуляторов типа ИВ-28А.
Индикатор ИВ-28А имеет только 19 выводов. Конструкция этого индика- тора такова, что все одноименные аноды-сегменты в ней соединены вместе. Поэтому знак, высвечивается при временном совпадении напряжений управляющих сеток и анодов-сегментов. При этом, если подано напряжение на анод-сегмент, но отсутствует напряжение на управляющей сетке данного разряда, индикации знака не будет. Свечение на аноде-сегменте возникает только при одновременном поступлении напряжений на анод-сегмент и управляющую ceт«у. Для индикации показаний измеряемой величины в данном индикаторе в (различных режимах используется от 4 до 8 разрядов. Старший, девятый, разряд используется для индикации перегрузки при измерении напряжений. Амплитуда импульсов, подаваемых на аноды-сегменты и управляющие сетки с выходных ключей, равна примерно 25 В. Для питания накала индикатора (ток накала около 40 мА) использован источник напряжения питания 5 В и гасящий резистор R86.
Отсчетное устройство состоит из двоичного счетчика DD11, восьмидекад-«ого двоично-десятичного счетчика DD19 — DD26, промежуточного восьмидекад-ного регистра памяти DD27 — DD34 на универсальных сдвигающих регистрах, четырех селекторов-мультиплексоров данных на восемь каналов DD35 — DD38, преобразователя двоично-десятичного кода в код семисегментных индикаторов jDD39, десятичного дешифратора DD40 и выходных ключей управления индикатором DD41 — DD44.
Работает отсчетное устройство следующим образом.
Хронизатор.
Хронизатор комплекса (см. рис. 54) включает в себя времен--ной селектор DD12.2, DD12.3, устройство управления временным селектором DD12.1, DD13, формирователи импульсов сброса, переписи, а также интервала «Время индикации».
Для рассмотрения работы хронизатора предположим, что устройство находится в исходном состоянии, т. е. триггеры DD13 и счетные декады установлены на ноль. С приходом первого импульса с блока эталонных интервалов (период следования импульсов 0,1 или 1 с выбирается переключателем S7) триггер DD13.1 через DD12.1 переключится в состояние логической единицы, так как на второй вход DD12.1 с выхода DD13.2 поступает напряжение высокого уровня. Напряжение высокого уровня с выхода DD13.1 откроет селектор DD12.2. Импульсы с входного формирователя или преобразователя напряжение — частота (выбирается с помощью переключателя S11) через контакты-S11.1, S10, S8.3 и DD12.2, DD12.3 поступают на первую декаду счетчика. С приходом второго эталонного импульса, определяющего время измерения, триггер DD13.1 снова вернется в нулевое состояние и закроет селектор DD12.2. Положительный перепад напряжения на. его выходе Q переключит триггер DD13.2 в состояние логической единицы. Отрицательный перепад напряжения на выходе Q заблокирует DD12.1, поэтому последующие эталонные импульсы до сброса триггеров хронизатора влияния на него не оказывают.
Отрицательный, же перепад напряжения на выходе Q DD13.2 запускает од-новибраторы DD14, DD15. На DD14 собран формирователь импульса «Перепись». Длительность импульса определяется внутренним резистором 10 кОм;. внешней емкостью — конденсатором С19 и равна примерно 1 мс. Таким образом по окончании времени измерения происходит перепись информации со счетных декад в регистр памяти. Одновибратор DD15 служит для формирования импульса «Время индикации». Длительность импульса определяется внешними элементами R60, R61, С20 и равна 0,5 — 3 с. Время индикации регулируется резистором R60. По окончании импульса «Время индикации» отрицательный перепад напряжения на прямом выходе Q DD15 запускает одновибратор DD16, который формирует импульс «Сброс».
Длительность импульса примерно 1 мс. Таким образом импульс «Сброс» имеет временную задержку по отношению к концу измерительного интервала, определяемую длительностью импульса DD15. Положительный импульс с прямого выхода DD16 переводит счетные декады в» нулевое состояние, а отрицательный с инверсного выхода устанавливает в нулевое состояние триггер DD13 хронизатора. Устройство совпадения DD12.1 снова открыто, и следующий эталонный импульс снова переключит DD13.1 в состояние логической единицы и т. д.
С помощью переключателя S8 прибор переводят в режим измерения периода, а с помощью S10 устанавливают режим «Самоконтроль». В режим»
«Самоконтроль» на временной селектор импульсы поступают не с формирователя, а с блока эталонных интервалов (1 МГц).
Выключателем S16 хронизатор переводится в режим разового пуска от S17. Устройство управления запятой (см. рис. 54). Оно собрано на селекторе-мультиплексоре DD45 и VT12. Входы 1-2-4 селектора DD45 подключены к вы-ходам 2-4-8 DD11 соответственно. На один из информационных входов Х5 — Х9 через контакты переключателей подается напряжение низкого уровня. При оп« росе этого входа на выходе VT12 будет формироваться напряжение высокого уровня, которое вызовет свечение соответствующей запятой. В режиме из-мерения периода запятая не высвечивается. При измерении частоты запятой выделяются килогерцы, при измерении напряжения — отделяются вольты, при измерении коэффициента нелинейных искажений — проценты.
Устройство индикации перегрузки (см. рис. 54). Оно выполнено на элементах DD18.2, DD18.3 и ОУ DA5. Выходы DD18.2, DD18.3 объединены и управляют напряжением на сетке девятого разряда. На входы DD18.2 с блока эталонных частот постоянно поступают импульсы частотой 1 Гц. На входы DD18.3 поступает напряжение с двуполярного компаратора DA5. Если напряжение на входе прибора превышает предельное не более чем на 20% (например, 2,4 В на пределе 2 В), то на выходе компаратора DA5 будет напряжение высокого уровня, а следовательно, на выходе DD18.3 и на h9 HG1 — напряжение низкого уровня.
Индикации перегрузки не будет. При превышении входным нап» ряжением предела измерения более чем на 20% на выходе компаратора DA5 будет напряжение низкого уровня, на выходе DD18.3 — высокого и импульсы а частотой 1 Гц будут поступать на сетку h9 индикатора. В этом случае девятый разряд индикатора будет мигать с периодом 1 с, индицируя перегрузку прибора. Порог срабатывания компаратора, равный примерно ±(2,4 — 2,5) В, подбирается с помощью резистора R90.
Устройство индикации полярности и гашения избыточных разрядов (см, рис. 54). Оно собрано на элементах DD17, DD12.4, DD18.1. При измерении частоты или периода на один из двух входов элемента DD18.1 подается через пе» реключатель S11.3 напряжение низкого уровня. Поэтому на входе «Гашение» (Г) элемента DD39, подключенного к выходу DD18.1, будет напряжение высокого уровня, В этом случае высвечиваются все восемь разрядов индикатора. При измерении напряжений на входе элемента DD18.1 — напряжение высокого уровня и сигналы, имеющиеся на входах DD17.1, управляют входом «Гашение» DD39. Эти сигналы поступают с выходов DD40 временного распределителя. Таким образом,,при измерении напряжений гасятся либо 5 — 8-е разря» ды индикатора (пределы 2 — 2000 В), либо 6 — 8-е разряды (предел 0,2 В). При измерении напряжений отрицательной полярности в шестом разряде индикатора высвечивается сегмент q6.. На вход элемента DD12.4 поступают отрицательные импульсы, соответствующие шестому разряду распределителя, С выхода DD12.4 положительные импульсы поступают на один из трех входов DD17.2. На второй вход этого элемента поступает напряжение с DD9.1 (при отрицательной полярности — напряжение высокого уровня). На третий вход в режиме измерения напряжений поступает напряжение высокого уровня с переключателя S11.3. Выход DD17.2 через ключ DD42.3 управляет зажиганием сегмента дб.
Рве. 55. Принципиальная схема генератора низкочастотных сигналов
Генератор низкочастотных сигналов (рис. 55). Он собран на ОУ DAS в транзисторах VT13, VT14. В качестве частотнозадающей цепи положительной обратной связи выбран мост Вина, состоящий из последовательной и парал-лельной ветвей.
Эти ветви образуют избирательный по частоте делитель напряжения. Напряжение, образующееся на параллельной ветви, подается на неин-вертиругощий вход ОУ. В установившемся режиме частота колебаний для одного из поддиапазонов может быть вычислена как
Обычно элементы ветвей моста Вина выбирают равными между собой, т. е. С22=С26, R94=R96. В этом случае
F=1/2(2пRZC).
Для устойчивой генерации колебаний коэффициент передачи исходного усилителя без цепи положительной обратной связи должен быть больше зИ (где зп — коэффициент передачи этой цепи):
где Rпосл, Спосл, Rпар, Сиар — соответственно номиналы элементов в последовательной и параллельной ветвях. При равенстве RПосл=Rпар, Спосл = Спар коэффициент зп=1/3. Положительная обратная связь приводит к увеличению нелинейных искажений генерируемого сигнала. Для снижения искажений сигнала, а также для стабилизации амплитуды сигнала на выходе в генератор вводится отрицательная обратная связь, причем в ее цепь включается нелиней-ный элемент (лампа накаливания, термистор). Стабилизирующее действие цепи сказывается тем сильнее, чем больше коэффициент усиления исходного усилителя.
В данном генераторе ветви моста Вина образованы коммутируемыми в зависимости от поддиапазона конденсаторами С22 — С29 и резисторами R94 — R96. Для обеспечения малых искажений и амплитудной неравномерности в качестве сдвоенного резистора R95 применен прецизионный проволочный резистор с раз-бросом сопротивления между секциями не более 2%. Применение вместо него обычного сдвоенного резистора, например СП-3-4 с разбросом 15 — 20%, значительно ухудшит параметры генератора.
Во входном каскаде ОУ DA6 использованы полевые транзисторы. Это позволило применить сравнительно высокоомный резистор R95. Кроме того, ОУ этого типа имеют высокий коэффициент усиления без цепи отрицательной обратной связи (не менее 50 тыс.), большую скорость нарастания и частоту единичного усиления (соответственно до 50 В/мкс; 15 МГц).
Все - это позволило получить малые нелинейные искажения и амплитудную неравномерность в широком диапазоне частот.
Выходной каскад генератора выполнен на комплементарных транзисторах VT13, VT14, работающих в режиме АВ по схеме с общим коллектором. На--чальный ток смещения определяется диодами VD17 — VD19. Применение дополнительного каскада на транзисторах позволило получить собственное выходное сопротивление генератора порядка долей ом. Генератор имеет безъемкостной выход. С помощью резистора R98 устанавливают нулевое напряжение на выходе генератора по постоянному току. Подстройкой резистора R97, определяющим глубину отрицательной обратной связи, добиваются минимальных искажений и амплитудной неравномерности во всем частотном диапазоне. Транзисторы VT13, VTJ4 должны иметь одинаковые статические коэффициенты пе-. редачи тока — примерно 50 — 80. Генератор не боится короткого замыкания на выходе, так как напряжение положительной обратной связи снимается непосредственно с выходного каскада. В генераторе имеется возможность получения двуполярных прямоугольных импульсов. Они формируются с помощью конденсатора СЗО и триггера Шмитта DD46, подключаемого с помощью переключателя S22. На выходе генератора включен ступенчатый аттенюатор S23, S24 ослабления выходного сигнала ( — 20, — 40 дБ). Плавную регулировку уровня выходного сигнала осуществляют резистором RW8. С выходного разъема сигнал поступает также на другие узлы комплекса для установки выходной частоты и уровня.
Измеритель нелинейных искажений (рис. 56). Он состоит из входного аттенюатора с коэффициентом передачи 1 или 1 :,10 (пределы входных напряжений 0,3 — 3 и 3 — 30 В соответственно), аттенюатора поддиапазона измерения КНИ, буферного усилителя, активного режекторного фильтра и масштабного усилителя. Максимальная чувствительность блока составляет примерно 0,3 В.
Аттенюатор поддиапазона измерения КНИ Rill — R113 позволяет получить два поддиапазона измерения: 100,0 и 10,00%.
Поддиапазоны переключаются кнопочными переключателями S14, S15. Буферный усилитель собран по схеме составного эмиттерного повторителя на транзисторах VT15, VT16. Его высокое входное сопротивление не шунтирует цепи аттенюатора, а низкое выходное сопротивление этого каскада обеспечивает стабильную работу режекторного фильтра. В этом случае выходным сопротивлением источника сигнала для режекторного фильтра является резистор R118.
Рис. 56. Принципиальная схема измерителя нелинейных искажений
Режекторный фильтр собран по схеме моста Вина. Мост Вина служит для подавления напряжения первой гармоники. На частоте квазирезонанса, определяемой соотношением F=l/(2пRC), коэффициент передачи моста Вина примерно равен нулю. Поэтому на его выходе получается сигнал, содержащий только гармонические составляющие (вторая, третья и далее гармоники). Мост Вина включен на входе ОУ DA8. Настройка моста Вина на частоту квазире-вонанса осуществляется грубо с помощью резистора R1I9, а точно — с помощью R123. Коэффициент передачи фильтра для обеспечения его высоких избирательных свойств на частоте квазирезонанса должен быть равен 1/3. Балансировку моста Вина, т. е. точную установку коэффициента передачи фильтра, осуществляют с помощью резистора R126. Для стабилизации рабочей точки ОУ, его коэффициента усиления, а также для выравнивания частотной характеристики фильтра введена отрицательная обратная связь по постоянному {R129) и переменному (R128) токам.
Сигнал с выхода эмиттерного повторителя через С36, R118 поступает на инвертирующий вход ОУ (через делитель R125 — R127, С43). На неинвертирую-щий вход поступает напряжение с перестраиваемого фильтра. Таким образом, входы ОУ включены в диагональ моста Вина. На выходе ОУ образуется сигнал, содержащий только вторую, третью и т. д. гармоники исходного сигнала. Диоды VD20, -VD21 служат для защиты входов ОУ DA7 от перегрузки. Частот-аый поддиапазон измерения выбирается с помощью групп тех же переключателей, что и в генераторе низкочастотных сигналов (S19, S20, S21). Масштаб-яын усилитель, собранный на ОУ DA8, служит для дополнительного усиления .выделенного сигнала.
Перед началом измерения при поданном на вход блока сигнале с помощью переключателей S14, S15 (оба в отжатом положении) и резистора R110 «Уровень» устанавливают на цифровом индикаторе значение 100,0%- В $том режиме, входной сигнал нормируется по уровню, так как режекторный фильтр отключен. После этого нажатием переключателя S16 включают поддиапазон измерения 100,0% и последовательными регулировками «Грубо», «Точно», «Баланс» добиваются минимальных показаний. Если значение КНИ будет меньше 10%, нажатием переключателя S14 переходят на поддиапазон 10,00% и повторяют те же операции. После их выполнения необходимо проконтролировать и при необходимости скорректировать значение входного сигнала с помощью резистора R110 «Уровень» (при отжатых переключателях S14, S15). После этого, неебходимо снова произвести подстройку R123 («Точно») и R126 («Баланс») на пределе 10,00%.
Для большинства случаев измерения КНИ допустима замена детектора СКЗ детектором средневыпрямленных значений. Анализ выражений
(где Ai — значение (-гармоники для сигналов с точно измеренным КНИ, не превосходящим 10%, а также с учетом того, что уровень гармоник в среднем уменьшается с ростом номера гармоники) показывает, что дополнительная погрешность, образующаяся при такой замене, не превышает примерно 50%.
Калибровку КНИ необходимо производить на частоте примерно 1 кГц. В этом случае наибольшая дополнительная погрешность не превосходит +30% на частоте 20 Гц и — 30% на частоте 20 кГц.
Рис. 57. Принципиальная схема блока питания
Блок питания (рис. 57). Он обеспечивает узлы комплекса следующими питающими напряжениями: стабилизированным +5 В при токе нагрузки до 1 А, стабилизированным ±15 В при токе нагрузки до 50 мА, нестабилизированным +25 В при токе нагрузки до 50 мА.
Стабилизатор напряжения +5 В собран по компенсационной схеме на элементах ОУ DA9, VT17, VT18. На ОУ собран элемент сравнения опорного напряжения (с VD30) с частью выходного (делитель R136, R137). Выходное напряжение ОУ является управляющим для усилителя постоянного тока VT17, Выходное напряжение устанавливается подбором резистора R136.
Стабилизатор ±15 В включает в себя стабилизатор напряжения 30 В на транзисторе VT19 и устройство выделения напряжения средней точки на ОУ DAW, VT20 — VT22.
Микросхема DA10 сравнивает напряжение средней точки на выходе стабилизатора и напряжение установки симметрии, снимаемое, с движка переменного резистора R138. В зависимости от того, какое из напряжений больше, открывается либо верхнее, - либо нижнее плечо каскада симметрирования. За счет большого коэффициента усиления в петле обратной связи устройство практически не реагирует на изменения нагрузки, устраняя перекос напряжения ±15 В.
Цепочка С56, R139 и С57 служит для предотвращения самовозбуждения ОУ. Ток покоя выходного каскада с помощью R140 устанавливается равным 5 — 10 мА.